organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(3-Carboxybenzyl)-1*H*-benzo[*d*]imidazol-3-ium nitrate monohydrate

Xia Xia Zhao, Jian Ping Ma, Ru Qi. Huang and Yu Bin Dong*

College of Chemistry, Chemical Engineering and Materials Science, Engineering Research Centre for Clean Production of Pesticide and Medicinal Intermediates, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China

Correspondence e-mail: yubindong@sdnu.edu.cn

Received 12 April 2007; accepted 28 May 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.066; wR factor = 0.166; data-to-parameter ratio = 12.2.

In the crystal structure of the title compound, $C_{15}H_{13}N_2O_2^+ \cdot NO_3^- \cdot H_2O$, $O-H \cdot \cdot \cdot O$ and $N-H \cdot \cdot \cdot O$ hydrogen bonds link the cations, the nitrate anions and the water molecules.

Experimental

Crystal data

c = 13.092 (4) Å
$\alpha = 80.201 \ (4)^{\circ}$
$\beta = 87.226 \ (4)^{\circ}$
$\gamma = 89.146 \ (4)^{\circ}$
$V = 767.8 (4) \text{ Å}^3$

Z = 2
Mo $K\alpha$ radiation
$\mu = 0.11 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector	2669 independent reflections
diffractometer	1892 reflections with $I > 2\sigma(I)$
Absorption correction: none	$R_{\rm int} = 0.016$
3255 measured reflections	

T = 298 (2) K 0.39 × 0.17 × 0.16 mm

3 restraints

 $\Delta \rho_{\rm max} = 0.29 \text{ e} \text{ Å}^{-1}$

 $\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$

H-atom parameters constrained

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.166$ S = 1.072669 reflections 218 parameters

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdots O4^{i}$	0.86	1.91	2.735 (4)	159
$N2-H2A\cdots O5^{i}$	0.86	2.44	3.168 (4)	143
$N2-H2A\cdots N3^{i}$	0.86	2.51	3.352 (4)	168
$O2 - H2 \cdots O6$	0.82	1.78	2.599 (3)	173
$O6-H6A\cdots O3^{ii}$	0.86	1.91	2.775 (3)	175
O6−H6A…N3 ⁱⁱ	0.86	2.68	3.454 (4)	150
$O6-H6B\cdots O1^{ii}$	0.85	1.94	2.773 (3)	167

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) -x, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

The authors thank the National Natural Science Foundation of China (grant Nos. 20671060, 20371030 and 20335030) and Shangdong Natural Science Foundation (grant Nos. Z2004B01, J06D05 and 2006BS04040) for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2033).

References

Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o3440 [doi:10.1107/81600536807025949]

1-(3-Carboxybenzyl)-1*H*-benzo[*d*]imidazol-3-ium nitrate monohydrate

X. X. Zhao, J. P. Ma, R. Q. Huang and Y. B. Dong

Comment

The title compound was obtained by accident in the reaction of 2,5-bis(benzo[*d*]imidazol methylphenyl)-1,3,4-oxadiazol with nitric acid and its crystal structure was confirmed by X-ray diffraction. In the crystal structure the organic cations are connected *via* O—H···O hydrogen bonding between the carboxyl hydrogen atoms and the water molecules. The water molecules act also as donor for O—H···O hydrogen bonds to the carbonyl oxygen atoms and to the nitrate anions (Fig. 1 and Table 1). The N—H H atoms forms weak bifurcated hydrogen bond to the nitrate anions.

Experimental

2,5-bis(benzo[*d*]imidazol methylphenyl)-1,3,4-oxadiazol (48.2 mg, 0.10 mmol), 0.04 ml of concentrated nitric acid and 5 ml of water were seeled in a teflon-lined stainless steel autoclave, heated at 150 degree for 40 h and cooled down to room

Refinement

The C—H, N—H and carboxyl H atoms were placed in geometrically idealized positions (carboxyl allowed to rotate but not to tip) and were refined isotropic ($U_{iso}(H) = 1.2U_{eq}(C, N)$) or $1.5U_{eq}(O)$) using a riding model with C—H 0.93 Å for aromatic, 0.970Å for methylene, 0.86Å for N—H and 0.82Å for O—H H atoms. The water H atoms were located in difference map and afterwards they were refined isotropic using a riding model.

Figures

Fig. 1. Crystal structure of I with labelling and displacement ellipsoids drawn at the 30% probability level. Intermolecular hydrogen bonding is shown as dashed lines. Symmetry codes: (i):1 - x, -y, 2 - z; (ii): -x, 1 - y, 1 - z)

1-(3-Carboxybenzyl)-1H-benzo[d]imidazol-3-ium nitrate monohydrate

Crystal data
$C_{15}H_{13}N_2O_2^+ \cdot NO_3^- \cdot H_2O$ $M_r = 333.30$
Triclinic, <i>P</i> T
Hall symbol: -P 1
<i>a</i> = 7.473 (2) Å
<i>b</i> = 7.974 (2) Å
c = 13.092 (4) Å

Z = 2 $F_{000} = 348$ $D_x = 1.442 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 884 reflections $\theta = 2.6-23.5^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$

$\alpha = 80.201 \ (4)^{\circ}$	T = 298 (2) K
$\beta = 87.226 \ (4)^{\circ}$	Block, yellow
$\gamma = 89.146 \ (4)^{\circ}$	$0.39 \times 0.17 \times 0.16 \text{ mm}$

V = 767.8 (4) Å³

Data collection

Bruker SMART CCD area-detector diffractometer	1892 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.016$
Monochromator: graphite	$\theta_{max} = 25.0^{\circ}$
T = 298(2) K	$\theta_{\min} = 2.6^{\circ}$
ϕ and ω scans	$h = -6 \rightarrow 8$
Absorption correction: none	$k = -9 \rightarrow 9$
3255 measured reflections	$l = -14 \rightarrow 15$
2669 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.066$	H-atom parameters constrained
$wR(F^2) = 0.166$	$w = 1/[\sigma^2(F_o^2) + (0.072P)^2 + 0.234P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
2669 reflections	$\Delta \rho_{max} = 0.29 \text{ e } \text{\AA}^{-3}$
218 parameters	$\Delta \rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$
3 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O5	0.0870 (4)	0.2889 (4)	0.7702 (2)	0.0833 (8)

03	-0.0372 (4)	0.5364 (3)	0.7297 (2)	0.0791 (8)
C1	0.2502 (4)	0.2061 (4)	0.5525 (2)	0.0478 (8)
C2	0.3531 (4)	0.0568 (4)	0.6032 (2)	0.0418 (7)
C3	0.2819 (4)	-0.1032 (4)	0.6114 (2)	0.0489 (8)
Н3	0.1680	-0.1158	0.5881	0.059*
C4	0.3772 (5)	-0.2447 (4)	0.6537 (3)	0.0571 (9)
H4	0.3288	-0.3528	0.6591	0.068*
C5	0.5468 (4)	-0.2241 (4)	0.6883 (2)	0.0511 (8)
Н5	0.6122	-0.3194	0.7166	0.061*
C6	0.6202 (4)	-0.0643 (4)	0.6816 (2)	0.0415 (7)
C7	0.5228 (4)	0.0756 (4)	0.6377 (2)	0.0428 (7)
H7	0.5716	0.1837	0.6313	0.051*
C8	0.8047 (4)	-0.0442 (4)	0.7193 (2)	0.0495 (8)
H8A	0.8845	-0.1291	0.6966	0.059*
H8B	0.8506	0.0673	0.6889	0.059*
C9	0.8492 (4)	-0.2011 (4)	0.8964 (3)	0.0602 (9)
Н9	0.8939	-0.2998	0.8753	0.072*
C10	0.7576 (4)	-0.0185 (5)	0.9952 (3)	0.0560 (9)
C11	0.7128 (5)	0.0675 (6)	1.0765 (3)	0.0736 (11)
H11	0.7212	0.0165	1.1455	0.088*
C12	0.6555 (5)	0.2319 (6)	1.0489 (3)	0.0853 (13)
H12	0.6264	0.2951	1.1010	0.102*
C13	0.6389 (5)	0.3082 (5)	0.9462 (3)	0.0795 (12)
H13	0.5981	0.4201	0.9313	0.095*
C14	0.6818 (5)	0.2214 (4)	0.8661 (3)	0.0613 (9)
H14	0.6705	0.2710	0.7971	0.074*
C15	0.7422 (4)	0.0575 (4)	0.8936 (2)	0.0461 (7)
N1	0.8026 (3)	-0.0630 (3)	0.83307 (19)	0.0473 (6)
N2	0.8239 (4)	-0.1808 (4)	0.9934 (2)	0.0656 (8)
H2A	0.8451	-0.2559	1.0469	0.079*
01	0.1054 (3)	0.1933 (3)	0.51702 (19)	0.0648 (7)
O2	0.3318 (3)	0.3517 (3)	0.54908 (18)	0.0615 (6)
H2	0.2747	0.4280	0.5147	0.092*
O6	0.1746 (3)	0.6002 (3)	0.43115 (18)	0.0626 (6)
H6A	0.1330	0.5518	0.3831	0.094*
H6B	0.0926	0.6570	0.4572	0.094*
N3	0.0482 (4)	0.4312 (4)	0.7898 (2)	0.0619 (8)
O4	0.0916 (4)	0.4709 (3)	0.8734 (2)	0.0901 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
O5	0.099 (2)	0.0782 (18)	0.0726 (19)	0.0321 (16)	-0.0032 (14)	-0.0163 (14)
O3	0.106 (2)	0.0669 (16)	0.0624 (17)	0.0138 (15)	-0.0301 (15)	-0.0006 (13)
C1	0.0491 (19)	0.058 (2)	0.0396 (18)	0.0042 (16)	-0.0025 (14)	-0.0176 (14)
C2	0.0449 (17)	0.0519 (18)	0.0310 (16)	0.0026 (14)	0.0022 (12)	-0.0153 (13)
C3	0.0479 (18)	0.059 (2)	0.0425 (18)	-0.0013 (16)	0.0006 (13)	-0.0169 (15)
C4	0.066 (2)	0.053 (2)	0.053 (2)	-0.0115 (17)	0.0020 (16)	-0.0144 (16)

C5	0.061 (2)	0.0510 (19)	0.0411 (18)	0.0056 (16)	-0.0007 (14)	-0.0087 (14)
C6	0.0446 (17)	0.0498 (17)	0.0298 (16)	0.0023 (14)	0.0020 (12)	-0.0075 (13)
C7	0.0450 (17)	0.0503 (17)	0.0342 (16)	-0.0015 (14)	0.0015 (12)	-0.0111 (13)
C8	0.0470 (18)	0.0559 (18)	0.0448 (19)	0.0058 (15)	0.0006 (13)	-0.0080 (14)
C9	0.056 (2)	0.061 (2)	0.061 (2)	0.0052 (17)	-0.0157 (16)	0.0001 (18)
C10	0.0477 (19)	0.075 (2)	0.045 (2)	-0.0176 (17)	-0.0078 (14)	-0.0072 (17)
C11	0.063 (2)	0.110 (3)	0.048 (2)	-0.026 (2)	-0.0002 (17)	-0.013 (2)
C12	0.080 (3)	0.114 (4)	0.071 (3)	-0.028 (3)	0.021 (2)	-0.047 (3)
C13	0.086 (3)	0.076 (3)	0.080 (3)	-0.008 (2)	0.020 (2)	-0.031 (2)
C14	0.066 (2)	0.061 (2)	0.056 (2)	-0.0068 (18)	0.0057 (16)	-0.0129 (17)
C15	0.0408 (17)	0.0532 (19)	0.0440 (18)	-0.0103 (14)	-0.0014 (13)	-0.0065 (14)
N1	0.0440 (15)	0.0502 (15)	0.0466 (16)	0.0010 (12)	-0.0090 (11)	-0.0031 (12)
N2	0.0603 (18)	0.074 (2)	0.056 (2)	-0.0014 (16)	-0.0205 (14)	0.0121 (15)
01	0.0537 (14)	0.0676 (15)	0.0794 (17)	0.0101 (12)	-0.0249 (12)	-0.0254 (12)
O2	0.0622 (15)	0.0528 (14)	0.0696 (17)	0.0026 (12)	-0.0157 (11)	-0.0076 (12)
O6	0.0566 (13)	0.0565 (13)	0.0749 (17)	0.0027 (11)	-0.0119 (11)	-0.0098 (11)
N3	0.0667 (19)	0.065 (2)	0.0504 (19)	0.0015 (16)	-0.0042 (14)	-0.0002 (15)
O4	0.133 (2)	0.0772 (18)	0.0630 (18)	0.0008 (17)	-0.0435 (16)	-0.0091 (14)

Geometric parameters (Å, °)

O5—N3	1.232 (4)	C9—N1	1.314 (4)
O3—N3	1.240 (3)	С9—Н9	0.9300
C1—O1	1.211 (3)	C10—C15	1.374 (4)
C1—O2	1.313 (3)	C10—N2	1.382 (4)
C1—C2	1.484 (4)	C10—C11	1.386 (5)
C2—C3	1.375 (4)	C11—C12	1.367 (5)
C2—C7	1.386 (4)	C11—H11	0.9300
C3—C4	1.375 (4)	C12—C13	1.389 (6)
С3—Н3	0.9300	C12—H12	0.9300
C4—C5	1.387 (4)	C13—C14	1.375 (5)
C4—H4	0.9300	C13—H13	0.9300
C5—C6	1.382 (4)	C14—C15	1.371 (4)
С5—Н5	0.9300	C14—H14	0.9300
C6—C7	1.379 (4)	C15—N1	1.402 (4)
C6—C8	1.507 (4)	N2—H2A	0.8600
С7—Н7	0.9300	O2—H2	0.8200
C8—N1	1.471 (4)	O6—H6A	0.8642
C8—H8A	0.9700	O6—H6B	0.8499
C8—H8B	0.9700	N3—O4	1.249 (4)
C9—N2	1.312 (4)		
O1—C1—O2	123.6 (3)	C15-C10-N2	106.6 (3)
O1—C1—C2	122.7 (3)	C15—C10—C11	121.5 (4)
O2—C1—C2	113.7 (3)	N2-C10-C11	131.9 (3)
C3—C2—C7	119.7 (3)	C12—C11—C10	115.8 (4)
C3—C2—C1	119.2 (3)	C12—C11—H11	122.1
C7—C2—C1	121.0 (3)	C10—C11—H11	122.1
C4—C3—C2	120.6 (3)	C11—C12—C13	122.6 (4)
С4—С3—Н3	119.7	C11—C12—H12	118.7

С2—С3—Н3	119.7		C13—C12—H12		118.7
C3—C4—C5	119.1 (3)		C14—C13—C12		121.2 (4)
C3—C4—H4	120.5		C14—C13—H13		119.4
C5—C4—H4	120.5		С12—С13—Н13		119.4
C6—C5—C4	121.2 (3)		C15—C14—C13		116.3 (4)
С6—С5—Н5	119.4		C15—C14—H14		121.9
С4—С5—Н5	119.4		C13—C14—H14		121.9
C7—C6—C5	118.7 (3)		C14—C15—C10		122.6 (3)
C7—C6—C8	120.8 (3)		C14—C15—N1		131.2 (3)
C5—C6—C8	120.5 (3)		C10-C15-N1		106.2 (3)
C6—C7—C2	120.7 (3)		C9—N1—C15		107.8 (3)
С6—С7—Н7	119.6		C9—N1—C8		125.4 (3)
С2—С7—Н7	119.6		C15—N1—C8		126.8 (2)
N1—C8—C6	111.5 (2)		C9—N2—C10		108.6 (3)
N1—C8—H8A	109.3		C9—N2—H2A		125.7
С6—С8—Н8А	109.3		C10—N2—H2A		125.7
N1—C8—H8B	109.3		C1—O2—H2		109.5
С6—С8—Н8В	109.3		H6A—O6—H6B		110.3
H8A—C8—H8B	108.0		O5—N3—O3		121.9 (3)
N2—C9—N1	110.8 (3)		O5—N3—O4		119.7 (3)
N2—C9—H9	124.6		O3—N3—O4		118.3 (3)
N1—C9—H9	124.6				
O1—C1—C2—C3	-0.5 (4)		C11—C12—C13—C14		-0.7 (6)
O2—C1—C2—C3	-179.9 (2)		C12—C13—C14—C15		-0.4 (5)
O1—C1—C2—C7	176.4 (3)		C13—C14—C15—C10		0.8 (5)
O2—C1—C2—C7	-3.0 (4)		C13-C14-C15-N1		-177.4 (3)
C7—C2—C3—C4	0.1 (4)		N2-C10-C15-C14		-179.3 (3)
C1—C2—C3—C4	177.1 (3)		C11—C10—C15—C14		-0.1 (5)
C2—C3—C4—C5	0.1 (4)		N2-C10-C15-N1		-0.6 (3)
C3—C4—C5—C6	0.5 (5)		C11-C10-C15-N1		178.5 (3)
C4—C5—C6—C7	-1.2 (4)		N2-C9-N1-C15		0.1 (3)
C4—C5—C6—C8	-179.9 (3)		N2-C9-N1-C8		-176.8 (3)
C5—C6—C7—C2	1.4 (4)		C14—C15—N1—C9		178.8 (3)
C8—C6—C7—C2	-180.0 (2)		C10-C15-N1-C9		0.3 (3)
C3—C2—C7—C6	-0.8 (4)		C14—C15—N1—C8		-4.4 (5)
C1—C2—C7—C6	-177.8 (2)		C10-C15-N1-C8		177.1 (3)
C7—C6—C8—N1	103.7 (3)		C6-C8-N1-C9		100.1 (3)
C5-C6-C8-N1	-77.7 (3)		C6-C8-N1-C15		-76.1 (3)
C15-C10-C11-C12	-0.9 (5)		N1-C9-N2-C10		-0.5 (4)
N2-C10-C11-C12	177.9 (3)		C15-C10-N2-C9		0.7 (3)
C10-C11-C12-C13	1.3 (6)		C11—C10—N2—C9		-178.3 (3)
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H2A····O4 ⁱ		0.86	1.91	2.735 (4)	159
N2—H2A···O5 ⁱ		0.86	2.44	3.168 (4)	143

0.86

2.51

N2—H2A…N3ⁱ

168

3.352 (4)

O2—H2…O6	0.82	1.78	2.599 (3)	173				
O6—H6A···O3 ⁱⁱ	0.86	1.91	2.775 (3)	175				
O6—H6A…N3 ⁱⁱ	0.86	2.68	3.454 (4)	150				
O6—H6B···O1 ⁱⁱ	0.85	1.94	2.773 (3)	167				
Symmetry codes: (i) $-x+1$, $-y$, $-z+2$; (ii) $-x$, $-y+1$, $-z+1$.								

Fig. 1